1. Introduction

The manufacturer's pallet-loading problem (MPLP; e.g. Dowsland, 1987a; Morabito and

Abstract

To solve the manufacturer's pallet-loading problem (MPLP), pallet-loading patterns with regular, sound and optimum number layouts should be presented. In this paper, we present a pinwheel pattern as an alternative solution to the pallet-loading problem. The definition, elements, categories, and practical advantages, generating algorithms of the pinwheel patterns, are discussed, and a uniform notation is proposed. With the ranges for all pinwheel instances within an area ratio no more than 76 boxes calculated, the study of geometry shows that each pinwheel pattern has a specific range of box ratio, and it may achieve optimality. The pinwheel pattern can be found for all non-prime numbers of boxes. Further discussions are focused on the dataset, loophole constraint and asymmetric pinwheels. The study suggests that the pinwheel pattern is an advantageous alternative to implement the MPLP.

Keywords: packing; pallet-loading pattern; geometry; pinwheel Morales, 1998) is a well-known type of a two-dimensional cutting and packing problem, in which a single pallet has to be loaded with a maximal number of identical boxes. The problem has many practical applications in production, distribution and logistics. Dyckhoff (1990) defined this problem as of type $2 / \mathrm{B} / \mathrm{O} / \mathrm{C}$, which means the problem is to assign a maximal number of small identical rectangles to a given large rectangle (representing the pallet). Wächer et al. (2007) further define the MPLP as a two-dimensional, rectangular identical item packing problem, and noted it as a layout problem regarding the arrangement of the (identical) small items on each of the large objects with respect to the geometric condition.
(C) 2009 The Authors.

Journal compilation © 2009 International Federation of Operational Research Societies
Published by Blackwell Publishing, 9600 Garsington Road, Oxford, OX4 2DQ, UK and 350 Main St, Malden, MA 02148, USA.

	ITOR	715		Dispatch: 14.4.09	Journal: ITOR	CE: Pooja
	Journal Name	Manuscript No.		Author Received:	No. of pages: 20	PE: Chris/Aswani

MPLP problems can be formulated as special 0-1 LP models, such as Beasley's (1985). However, because of the size of practical instances, $0-1$ models are generally too large to be computationally treated (Morabito et al., 2000). More , recently MPLP is just called the palletloading problem (PLP). In the 30 -year process of pursuing a PLP solution, although there are exact algorithms (Dowsland, 1987a; Bhattacharya et al., 1998; Alvarez-Valdes et al., 2005; Q4 Martins and Dell, 2008), heuristics emerge more and often. To solve this problem, the optimal number of boxes along with their loading pattern, as verification, should be figured out.

The pallet-loading pattern is an arrangement of boxes oriented orthogonally on the pallet to achieve a regular, stable and optimum number layout. Many heuristics are concentrated on the loading pattern to find the optimal solution, from the early four-block algorithms (Steudel, 1979; Smith and de Cani, 1980) to G4 (Scheithauer and Terno, 1996), G5 (Martins and Dell, 2008), M\&M heuristic (Morabito and Morales, 1998) and the L approach by Lins et al. (2003). Besides, there are metaheuristics based on tabu search (Pureza and Morabito, 2006), genetic algorithms (Herbert and Dowsland, 1996) and strategic oscillation (Amaral and Wright, 2001). Several upper bounds have also been proposed (Dowsland, 1984, 1985; Nelißen, 1995; Letchford and Amaral, 2001; Morabito and Farago, 1998), which consider the geometric structure of the problem and the linearly relax integer programming formulations.

Recently, Martins and Dell (2008) have solved optimality for all instances of PLP with an area ratio <101 boxes. Of the entire $3,080,730$ equivalent classes of PLP instances, 86.2% of the classes solved are within the one-block (58.9% alone) or the two-block patterns. Although oneblock and two-block patterns are common, they are usually of minor interest for pallet loading because of weak-stability guillotine cuts (Dyckhoff, 1990) and lack of symmetry for two-block patterns. Nevertheless, these classes and instances are based on the constraints proposed by Dowsland (1984) with the pallet length to width ratio between 1 and 2, the box length to width ratio between 1 and 4 and the pallet to box area ratio from 1 to 51 named as datasets Cover I, and from 51 to 101 as Cover II (Nelißen, 1995). However, in practical works, pallet ratios are finite and predetermined, while the box ratio may exceed 4 . The more the area ratio, the more the possibilities of one-block optimal patterns, which tend to be unstable and of less practical value. Thus, it is time to re-examine the range of the box ratio and area ratio constraints for the PLP.

Although there are many different types of loading patterns (Arenales and Morabito, 1995), the loading pattern alone seldom draws enough attention from the researchers, whose main concern is algorithms for area utilization optimality. Because the optimality of all PLP instances within an area ratio <101 boxes has finally been solved by the integration of many algorithms (Martins and Dell, 2008), suitable alternatives must be selected and presented for implementation on the request of the Operations Research methodology (Winston, 1994). PLP algorithms usually lead to a pinwheel-loading pattern, which is a sound, textured and easy-to-implement pattern with an even longer history than PLP (Bolz and Hagernan, 1958); although it may not be optimal in the number of boxes loaded, it is a suitable alternative for implementation. Therefore, we conducted this alternative study on pinwheel patterns, hoping to find their characteristics and applications to PLP.

The structure of this paper is as follows: the next section describes the pallet-loading pattern, its definition, characteristics and advantages. Next, a generic notation with six parameters for the pinwheel patterns is proposed and the notation's applications to the three pinwheel categories, namely simple, block and nested pinwheels are identified. In the geometry study, the relationships
(C) 2009 The Authors.

Journal compilation © 2009 International Federation of Operational Research Societies

2.1. PLP loading pattern

In PLP, boxes loaded on pallets should be orthogonal and without overlapping; accordingly, it is defined that the box is an H-box if it lies horizontally with its length a parallel to the length X of the pallet (for convenience, X is also the horizontal axis), its width b is parallel to the width Y of the pallet, and a vertically orientated box is called a V-box. A (homogeneous) block is defined as a rectangular subset of boxes that have the same orientation (V-boxes or H -boxes) (Scheithauer and Terno, 1996). Thus, the pallet-loading pattern is an arrangement of H -boxes/H-blocks and/or V-boxes/V-blocks on the pallet.

The loading pattern of PLP can be classified as guillotine, first-order non-guillotine and superiororder non-guillotine (Arenales and Morabito, 1995). A guillotine cut is a cut from one edge of a previously cut rectangle to the opposite edge (Dowsland and Dowsland, 1992); guillotine cuts apply to a rectangle orthogonally and produce two new rectangles. A pattern that results from successive guillotine cuts is a guillotine pattern. A guillotine pattern consists of one or more blocks; thus, there are one-block, two-block and three-block guillotine patterns. On the other hand, a first-order nonguillotine pattern has more than two homogeneous blocks, and a cut is of first order if it produces
(C) 2009 The Authors.
(a)

(e)

620x95 20 boxes block pinwheel
(b)

Pinwheel with corners folded inward
(f)

250x185 25 boxes nested pinwheel
(c)

245x230 20 boxes
block pinwheel
(g)

305×11033 boxes
nested pinwheel
(d)

(h)

Fig. 1. Some examples of pinwheel patterns; all outer red rectangles represent 1200×1000 pallets.
(C) 2009 The Authors.

Journal compilation © 2009 International Federation of Operational Research Societies

H-leaves and V-leaves form the pattern's complete rectangle. Thus, the pinwheel pattern is characterized by the holes (loops) arrangement, leaves formation and orientation.

2.3. Practical application of pinwheel-loading pattern

The PLP is simplified as a two-dimensional layout problem for maximizing the area utilization. However, after the optimality is reached, the implementation of the pallet layout should revert to three dimensions again to consider the stacking layers and stability of the pallet load. This objective conversely has other requirements on loading patterns. According to Liu and Hsiao (1997), the degree of stability between any two adjoining layers is mainly determined by the loading pattern. Besides the loading pattern, the stability of a pallet unit load also depends on the physical characteristics of the product, the mode of transportation and other factors. If the loading patterns are arranged properly, the unit load will be more stable. And Carpenter and Dowsland (1985) point out that the suitability of the pallet-loading patterns should be determined with respect to a variety of criteria affecting stability and clamp ability. Using compacting, centering blocks and distributing gap procedures, Bischoff extended the Bischoff and Dowsland (1982) algorithm to generate more stable layouts under the same criteria as those proposed by Carpenter and Dowsland. From the viewpoint of loading and handling the unit load, besides the loading pattern, the arrangement of boxes must meet the weight, stability and balance constraints (Gehring and Bortfeldt, 1997.)

The pinwheel-loading pattern, as a sound, textured and easy-to-implement pattern, has a longer history of practical application (Bolz and Hagernan, 1958; Tompkins et al., 2003). Its practical advantage lies in the following three aspects:

2.3.1. Stability

The stability of a pallet unit load is a prime requirement (Bischoff, 1991); proper loading stability will increase shipping stability, help to minimize transportation damage and reduce the amount of packing material needed (Liu and Hsiao, 1997). Because the pinwheel has a rectangular contour and close-loop H-box- and V-box-interlaced texture with an $R(180)$ symmetry rather than a reflection symmetry, we can apply a reflection in the X - or the Y-axis for the second layer, then all alternative layers are different with the box in one orientation interlocked by another orientated counterpart of alternative layers. Therefore, a quite stable alternative layer stacking is made through the odd and even layers' interlocking. This accordingly contributes to the stability of the whole pallet unit load.

2.3.2. Dynamic stability and balance

The stability of pallet load is more important when in a dynamic moving vehicle or handling situation. Both the pinwheel and the one-block pattern have a rigid rectangular contour, but the pinwheel will be more stable when in a dynamic vibrating situation because it has no "perfect column" structure like the one-block pattern. On the other hand, the pinwheel is a balanced pattern with a weight distribution better than two, three and even more block patterns. Its rotational symmetry means that the center of gravity is much closer to the contour's centroid, which can be easily derived from the examples in Fig. 1.
(C) 2009 The Authors.

Journal compilation © 2009 International Federation of Operational Research Societies

2.3.3. Contour and multi-face

In a pinwheel, the holes are defined less than a box by area; likewise, the base contact criterion is also satisfied. Furthermore, given a small enough hole (as in Fig. 1a, e, f, h), the pinwheel pattern would have a rigid rectangular contour; in both the X and the Y direction, the contour possesses a pair of perfectly flat opposite faces. Such pinwheel patterns are anti-slide and compact layouts with unused space inside but these holes cannot be moved out to contour edges through a simple "pushing" procedure. This is advantageous to a practical pallet-loading or clumping situation, where either palletizers, clump trucks or manual-loading methods are used to construct rigid and compact-loading layers or to handle for storage, stacking, loading/unloading, shrink-wrapping, etc. In a pinwheel pattern, the different outward faces of the outer boxes can be seen on each side of the pinwheel contour; thus, the label and other information on the box can be read or scanned more easily than homogeneous faces.

In all, the pinwheel pattern has practical advantages over the one-block pattern and other jagcontoured block patterns. It trades a small reduction in the number of boxes fitted for a more stable layout to implementation.

3. Pinwheel pattern by category

Because the pinwheel pattern has different holes (loops) arrangement, leaves formation and orientation, we classify pinwheel patterns into three categories: a simple pinwheel, a block pinwheel and a nested pinwheel, as shown in Fig. 1. These patterns become increasingly complex from a simple, block to nested pinwheel; while the first type has a single hole/loop and simple leaves of a single box, the block pinwheel has a single hole and at least a pair of leaves with blocks rather than single boxes, and the nested pinwheel has many nested loops/holes with the holes lying in a line or forming a hole-lattice.

The pinwheel is a texture with single or multiple loops/holes; hence, two parameters i and j are used to describe the hole layout, and the pinwheel loop consists of an interlaced H - and V-leaf, which may be a box block or a single box. Then an H-leaf is defined as m rows n columns of H -boxes and a V-leaf is defined as p rows q columns of V-boxes. Thus, a generic notation is recommended for a pinwheel with a hole-lattice of i rows (here, rows are parallel to the secondary diagonal - i.e. from the northeast corner to the southwest corner - of the contour rectangle formed by these boxes), j columns and with an H-leaf of m rows n columns and a V-leaf of p rows q columns boxes:

$$
[i, j-] m \times n-p \times q .
$$

For example, Fig. 1a shows a $1,1-1 \times 1-1 \times 1$ simple pinwheel. If there is just one single hole, or to say no nested loop, the item in the square bracket can be ignored; Fig. 1c shows a $2 \times 3-2 \times 2$ block pinwheel, and Fig. 1d and e shows a $4 \times 2-1 \times 3$ and $4 \times 1-1 \times 6$ block pinwheel, respectively. However, the nested pinwheel should retain i and j parameters, for example, Fig. 1f shows a 4,1$1 \times 1-1 \times 1$, Fig. 1 g shows a $1,2-3 \times 1-1 \times 4$ and Fig. 1h shows a $2,3-1 \times 1-1 \times 2$ nested pinwheel.

Also, by our notation, the hole-lattice is in i rows and j columns along the secondary diagonal, and there are $i \mathrm{H}$-leaves and $j \mathrm{~V}$-leaves on the horizontal contour edge, with a length of ina+jqb. Likewise, the contour width is imb $+j p a$. Thus, the total boxes number N is:

$$
\begin{equation*}
N=(i+j)(i m n+j p q) \tag{4}
\end{equation*}
$$

© 2009 The Authors.
Journal compilation © 2009 International Federation of Operational Research Societies

3.3. Nested pinwheel

By our classification, for a nested pinwheel pattern, one or more leaves of the pinwheel are further nested by other pinwheel(s), and more boxes/blocks are added to form a complete rectangle. Once they are nested, there will be more than one hole and each hole should be encompassed by a loop of leaves while a common leaf is shared by two adjacent loops.
(C) 2009 The Authors.

4.1. Hole constraint

In a pinwheel, it was generally supposed that the central hole should be small enough not to allow any box to fill in, i.e. the area of the hole should be less than a box's area:

$$
|p a-m b||n a-q b| \leqslant a b
$$

By the pinwheel definition, if the first leaf $(1 \mathrm{H})$ is lower than the second leaf $(2 \mathrm{~V})$, that is, a P1 style with $p a-m b>0$ and $n a-q b>0$ or it is a P3 style with $p a-m b<0$ and $n a-q b<0$. Thus, there is always:

$$
\begin{equation*}
(p a-m b)(n a-q b) \leqslant a b . \tag{5}
\end{equation*}
$$

With $a=b, \beta$ substitutes a in inequality (5), then

$$
(p \beta-m)(n \beta-q) \leqslant \beta
$$

That is,

$$
\begin{equation*}
p n \beta^{2}-(m n+p q+1) \beta+m q \leqslant 0 \tag{6}
\end{equation*}
$$

Thus, we have

$$
\Delta=b^{2}-4 a c=(m n+p q+1)^{2}-4 m n p q=(m n-p q+1)^{2}+4 p q
$$

Because m, n, p and q are all integers no less than $1, \Delta \geqslant 0$, then the β range is within

$$
\begin{equation*}
\frac{m n+p q+1-\sqrt{\Delta}}{2 p n} \leqslant \beta \leqslant \frac{m n+p q+1+\sqrt{\Delta}}{2 p n} \tag{7}
\end{equation*}
$$

The value of root expression may be <1 but by definition $\beta \geqslant 1$. Thus, we can have the box shape ratio range for a given pinwheel pattern.

For a simple pinwheel, with $m=n=p=q=1, \beta \leqslant 2.618$. This means that the box ratio cannot exceed 2.618. Otherwise, the area of the central hole is greater than the area of a box, and a box may (but not certainly can) be added on the hole. For example, if $\beta=2.5$, and the largest possible box size is 715×285 on a 1200×1000 pallet. The area of the central hole is $(715-285)^{2}=184,900$, which is less than the area of a box $(203,775)$.

4.1.1. Rigid condition

As shown in Figs. 1c, d, g and 2b, the holes are not rigid because a push inward can change the hole and thus create a ragged pinwheel contour. Here, a rigid condition should be derived. If the holes are square, as long as the inequality (5) is a strict inequality without equality, then the hole is rigid, as shown in Figs. 1a, f and 2a, c. Otherwise, four cases should be considered. The rectangular hole can have only two orientations, namely a H-hole (with a longer horizontal edge) and a V-hole, while there are two pinwheel pattern styles P1 and P3; thus, the four cases are P1-H, P1-V, P3-H and P3-V. For a P1-H hole, if $n a-p b<a$, then the hole is small enough to slide, the pinwheel pattern is rigid. Thus, $\beta<p /(n-1)$. Similarly, the rigid condition for the $\mathrm{P} 1-\mathrm{V}$ pinwheel is $\beta<(m+1) / p$; for the $\mathrm{P} 3-\mathrm{H}$ pinwheel it is $\beta>(q-1) / n$; and for the $\mathrm{P} 3-\mathrm{V}$ pinwheel it is $\beta>(m-1) / p$. Given the rigid condition and β range, rigid pinwheels can be determined.

5.1. Dataset

As mentioned above, the two datasets for PLP were Cover I with $1 \leqslant \alpha \leqslant 2,1 \leqslant \beta \leqslant 4$ and $4 \leqslant \gamma<51$ and Cover II with $51 \leqslant \gamma<101$ (Dowsland, 1984; Nelißen, 1995). These two sets of restrictions on pallet and box dimensions have always been used by other authors (e.g. Nelißen, 1993; Scheithauer and Terno, 1996; Morabito and Morales, 1998; Alvarez-Valdes et al., 2005; Birgin et al., 2005; Lins et al., 2003; Martins and Dell, 2008). However, the β range of $1-4$ is derived from the box range with a common length $200 \mathrm{~mm} \leqslant a \leqslant 600 \mathrm{~mm}$, with width $150 \mathrm{~mm} \leqslant b \leqslant 450 \mathrm{~mm}$ (Dowsland, 1984). In
(C) 2009 The Authors.

Journal compilation © 2009 International Federation of Operational Research Societies
practical situations, especially in factories, the box range varies and can exceed the limit significantly; thus, $\beta \leqslant 4$ limits many practical applications. Also, Alvarez-Valdes et al. (2005) point out that the definition of sets Cover I and Cover II is subject to some ambiguity. Sometimes, an instance satisfies the conditions defining the set but another equivalent instance does not. As one-block optimal patterns dominate PLP solutions (Martins and Dell, 2008), they are more likely to appear with a higher γ value. We think that the $\gamma<51$ is slightly less and $\gamma<101$ is slightly more, and an average $\gamma \leqslant 76$ of both Covers may be better. The relationship of the box ratio and the area ratio also needs to be re-examined. Hereby, we propose a unique dataset with the range of $1 \leqslant \beta \leqslant 10$ and $4 \leqslant \gamma \leqslant 76$.

Our calculations are all based on this new dataset. We have calculated all the 10,860 feasible instances of i, j, m, n, p, and q combinations in the above-proposed range. Also, for the real application of pinwheel patterns in pallet loading, we choose the ISO $1200 \times 1000 \mathrm{~mm}^{2}$ pallet (P1210), the Euro $1200 \times 800 \mathrm{~mm}^{2}$ pallet (P1208) and the Japan 1100 mm square pallet (P1111). Their α values are 1.2, 1.5 and 1.0, respectively. Because Martins and Dell (2007) have solved all the minimal size instances (MSI) of PLP, which is easy to obtain from their website, http:// www.palletloading.org, we use these real PLP instances on three common pallets directly, and some examples and their MSIs are also listed in the tables below.

5.2. "Perfect" pinwheel

Combining Equations (7) and (9), pinwheels with a contour perfectly filled to a given pallet (hence called "perfect" pinwheels) can be computed by enumerating all possible instances of i, j, m, n, p and q combinations. After the perfect β_{0} is determined, the PLP instance can be calculated based on Equations (10) and (11). Table 1 sums up these "perfect" pinwheels by category and by pallet, and Fig. 3 shows their distribution on the box number and box ratio matrix. However, some of

Table 1
"Perfect" pinwheel by category and by pallet

	Simple	Block	Nested		Total
			1DL	2DL	
Instances	1	7891	2668	300	10,860
P1111 perfect	1	26	122	16	165
$\beta_{0}>4$	0	0	38	0	38
$\beta_{0}>10$	0	0	2	0	2
$\operatorname{Max} \beta_{0}$	2.718	4	11	3	11
P1208 perfect	0	80	78	14	172
$\beta_{0}>4$	0	44	14	3	61
$\beta_{0}>10$	0	23	2	0	25
$\operatorname{Max} \beta_{0}$	0	29	12	8	29
P1210 perfect	0	62	113	14	189
$\beta_{0}>4$	0	34	44	0	78
$\beta_{0}>10$	0	19	2	0	21
$\operatorname{Max} \beta_{0}$	0	25	10.86	4.125	25
Summary	1	168	313	44	509

(C) 2009 The Authors. Journal compilation © 2009 International Federation of Operational Research Societies

Fig. 3. Box number and β value distribution for pinwheels with a perfect pallet contour circle (o) on the horizontal axis indicates a prime number, which is impossible in a pinwheel.

5.3. β range

In most cases, the pinwheel contour will not fill the pallet perfectly even though the pinwheel pattern can be optimal to the PLP. Usually, a range is set to the contour shape ratio δ, that is, $\delta \in[(1-\lambda) \alpha,(1+\lambda) \alpha]$, where λ may be $5-10 \%$. The data for some pinwheel examples listed in Table 2 are computed based on the above $\pm \lambda$ relaxation. Again, the pinwheel pattern may not be optimal, and the γ bound, and Martins and Dell's results are listed as a comparison. Here, the β range is computed by Equation (7) along with $\beta \geqslant 1$ by definition. In Table 2, there are 35 pinwheel examples for loading on the common pallets, while only 14 pinwheels are optimal. From the "Difference" column of Table 2 we can see that the difference of the pinwheel's box number to optimality is small. It seems that when the β value is larger, the pinwheel pattern tends to be optimal and usually with a block pinwheel pattern; when the box number is larger, the pinwheel pattern tends to non-optimal. Please note that for some instances, they may have multiple optimal patterns. For example, in line numbers 6, 13 and 21, optimal solutions are pinwheel patterns,
(C) 2009 The Authors.

Journal compilation © 2009 International Federation of Operational Research Societies
Table 2

(C) 2009 The Authors. Journal compilation © 2009 International Federation of Operational Research Societies
block patterns or guillotine patterns. Note, in the third row of the table, a nine-box $2,1-1 \times 1-$ 1×1 pinwheel has the smallest odd number of boxes among any of the pinwheel patterns. Also, there are 13 "perfect" pinwheels in Table 2.

In all, our two types of results verify our suggested box ratio limit to 10 ; also, this higher box ratio is not rare in real-life box dimensions. Because there are hard examples that many algorithms are working for, how about the new β limit, are there any new hard classes rising? This question should be answered in the future.

So far, the pinwheel pattern can be constructed by any number of boxes, except for those with prime numbers. For each i, j, m, n, p, q combination, there is a β range for the hole smaller than a box, and a rigid condition requires further β constraints. It may be an optimal pattern only when its contour ratio is close to the target pallet ratio. Our pinwheel pattern is not to pursue optimal box numbers but a near-optimum solution with a satisfactory number and pattern shape.

5.4. Slack of hole constraint

However, with our hole constraint, a special type of nested pinwheel - a pinwheel embedded completely within another pinwheel - cannot be formulated. Such "embedded pinwheel" examples can be found in Dowsland (1984, figs. 1 b and 2) and Nelißen's (1993, fig. 19) examples of ($23,23,4,3$) or $(40,40,7,5)$ instances by a complex block heuristic. These examples are shown in Fig. 4 below. Thus, we supplement our notation system by naming the "embedded pinwheel" as $m_{1} \times n_{1-}$

(23, 23, 4, 3) embeded pinwheel (44 boxes) Nelissen (1993) Fig 19a

(23, 23, 4, 3) embeded pinwheel
(44 boxes) Nelissen (1993) Fig 19b

Fig. 4. Embedded pinwheel examples. ${ }^{*}$ New finding from the original pattern structure; ${ }^{* *}$ revised based on the original figure.
(C) 2009 The Authors. Journal compilation © 2009 International Federation of Operational Research Societies
(a)

$(1000,1000,205,159)$ asymmetric block (30 boxes) Bischoff \& Dowsland (1982) Fig 3b
$(57,44,12,5)$ asymmetric nested (41 boxes) Morabito \& Morales (1998) Fig 6c

(42, 39, 9, 4) asymmetric nested (45 boxes) Morabito \& Morales (1998) Fig 2b
(e)

(1200, 1000, 345, 160) incomplete (21 boxes) Morabito et al (2000) Fig 3a
(c)

(43, 26, 7, 3) asymmetric nested (53 boxes) Lins et al. (2003) Fig 9
(f)

$\beta=1.523$ boxes incomplete Nelissen (1993) Fig. 2

Fig. 5. Examples of asymmetric patterns (pushed and compacted).
(C) 2009 The Authors.

Journal compilation © 2009 International Federation of Operational Research Societies hole lattice. These complete rectangular-contoured patterns can be generated by the L-approach (Lins et al., 2003) and HONG (Martins and Dell, 2008). It appears that the L-approach is more likely to generate rectangular contours.

On the other hand, an incomplete pinwheel is a guillotine pattern, which indeed is a
combination of pinwheels and/or some other pinwheel-loop-free blocks. At least there is a
(C) 2009 The Authors.
(a)

(b)

Box size: Length 8.5 in, width 7.5 in 29 boxes a layer on a 40×48 in pallet

Fig. 6. Steudel's example pattern (a) and the real-scale drawing (b).
figures are from the literature, but the patterns are condensed to compact structures, which reveal some jagged edges.
As early as in Steudel's (1979) paper, his projected procedure of the two-phase solution produces an asymmetric pinwheel with four different leaves and jagged contour edges. Also, there was a misleading layout pattern shown in Fig. 6a. This is an asymmetric pinwheel, but it appears as though the pattern has a perfect rectangular contour. Indeed, the technical in-scale drawing of the pattern shown in Fig. 6b reveals the eye illusion of the early computer line text printed figure it has a clear jagged edge on the right! However, Steudel's figure also gives us a hint: an asymmetric pinwheel without a rectangular contour is also acceptable in practice, as long as the jagged teeth are within certain limits.

An asymmetric block pattern can be described using a notation as $m_{1} \times n_{1}-p_{1} \times q_{1}-m_{2} \times n_{2}-$ $p_{2} \times q_{2}$, and it starts from the lower left leaf to the upper left, counter-clockwise. The length of the opposite edges can be lightly different; here, we suggest a 3% allowance in a contour edge jag. For example, the jag of Steudel's asymmetric block is 2.08%. The contour-jagged asymmetric block pinwheel pattern is the outcome of the four block algorithms (Steudel, 1979; Smith and De Cani, 1980) and it is a first-order non-guillotine pattern.

Asymmetric nested pinwheel patterns may outperform other asymmetric ones because they may have a completely rectangular contour, as shown in Fig. 5b. For any nested pinwheel only if both i and j are >1 (with a hole lattice) will it be a superior-order non-guillotine pattern. However, the symmetric pinwheel notation cannot apply to this asymmetric one, but this similar pattern type also applies to asymmetric nested pinwheels, as in Fig. 5b, it is a first-order non-guillotine pattern for it only has a line of holes, while Fig. 5 c is a superior-order non-guillotine pattern as it has a

Bolz, H.A., Hagernan, G.E. (eds.), 1958. Material Handling Handbook. Ronald Press, New York.
Carpenter, H., Dowsland, W.B., 1985. Practical considerations of the pallet-loading problem. Journal of the Operational Research Society 36, 489-497.
Dowsland, K.A., 1984. The three-dimensional pallet chart: An analysis of the factors affecting the set of feasible layouts for a class of two-dimensional packing problems. Journal of the Operational Research Society 35, 895-905.
Dowsland, K.A., 1985. Determining an upper bound for a class of rectangular packing problems. Computers and Operations Research 12, 201-205.
Dowsland, K.A., 1987a. An exact algorithm for the pallet loading problem. European Journal of Operational Research 31, 78-84.
Dowsland, K.A., 1987b. A combined database and algorithmic approach to the pallet loading problem. Journal of the Operational Research Society 38, 341-345.
Dowsland, K.A., Dowsland, W.B., 1992. Packing Problems. European Journal of Operational Research 56, 2-14.
Dyckhoff, H., 1990. A typology of cutting and packing problems. European Journal of Operational Research 44, 145-159.
Exeler, H., 1988. Das homogene Packproblem in der betriebswirtschaftlichen Logistik. Physica Verlag, Heidelberg.
Gehring, H., Bortfeldt, A., 1997. A Genetic Algorithm for Solving the Container Loading Problem. International Transactions in Operations Research 4, 401-418.
Herbert, E.A., Dowsland, K.A., 1996. A family of genetic algorithms for the pallet loading problem. Annals of Operations Research 63, 415-436.
Letchford, A.N., Amaral, A., 2001. Analysis of upper bounds for the Pallet Loading Problem. European Journal of Operational Research 132, 582-593.
Lins, L., Lins, S., Morabito, R., 2003. An L-approach for packing (l, w)-rectangles into rectangular and L-shaped pieces. Journal of the Operational Research Society 54, 777-89.
Liu, F.F., Hsiao, C., 1997. A Three-Dimensional Pallet Loading Method for Single-Size Boxes. Journal of the Operational Research Society 48, 726-735.
Martins, G.H.A., Dell, R.F., 2007. The minimum size instance of a pallet loading problem equivalence class. European Journal of Operational Research 179, 17-26.
Martins, G.H.A., Dell, R.F., 2008. Solving the pallet loading problem. European Journal of Operational Research 184, 429-440.
Morabito, R., Farago, R., 1998. A tight Lagrangean relaxation bound for the manufacturer's pallet loading problem. Studia Informatica Universalis 2, 57-76.
Morabito, R., Morales, S.R., 1998. A simple and effective recursive procedure for the manufacturer's pallet loading problem. Journal of the Operational Research Society 49, 819-828.
Morabito, R., Morales, S.R., Widmer, J.A., 2000. Loading optimization of palletized products on trucks. Transportation Research Part E 36, 285-296.
Nelißen, J., 1993. New approaches to the pallet loading problem, Working paper, RWTH Aachen. Available at ftp:// ftp.informatik.rwth-aachen.de/pub/reports/others/pallet.ps.Z.
Nelißen, J., 1995. How to use structural constraints to compute an upper bound for the pallet loading problem. European Journal of Operational Research 84, 662-680.
Pureza, V., Morabito, R., 2006. Some experiments with a simple tabu search algorithm for the manufacturer's pallet loading problem. Computers and Operational Research 33, 804-819.
Scheithauer, G., Terno, J., 1996. The G4-heuristic for the pallet loading problem. Journal of the Operational Research Society 47, 4, 511-522.
Smith, A., De Cani, P., 1980. An algorithm to optimize the layout of boxes in pallets. Journal of the Operational Research Society 31, 573-578.
Steudel, H.J., 1979. Generating pallet loading patterns: A special case of the two-dimensional cutting stock problem. Management Science 25, 997-1004.
Tompkins, J.A., White, J.A., Bozer, Y.A., Tanchoco, J.M.A., 2003. Facilities Planning, (third edn), John Wiley \& Sons, Toronto , Canada.
Wächer, G., Haußner, H., Schumann, H., 2007. An improved typology of cutting and packing problems. European Journal of Operational Research 183, 1109-1130.
Winston, W.L., 1994. Operations Research: Applications and Algorithm, (3rd edn), Wadsworth Inc., Belmont, CA.
(C) 2009 The Authors.

Journal compilation © 2009 International Federation of Operational Research Societies

Author Query Form

Journal	ITOR
Article	715

Dear Author,

During the copy-editing of your paper, the following queries arose. Please respond to these by marking up your proofs with the necessary changes/additions. Please write your answers clearly on the query sheet if there is insufficient space on the page proofs. If returning the proof by fax do not write too close to the paper's edge. Please remember that illegible mark-ups may delay publication.

Query No.	Description	Author Response
Q1	Author: The publication year of Morabito and Farago has been changed to match the publication year given in the reference list. Please confirm that this is correct.	
Q2	Author: The reference Wascher et al. (2007) has been changed to Wacher et al. (2007) so that this citation matches with the reference list. Please check and confirm that this is correct.	
Q3	Author: Reference Morabito, 2000 has been changed to Morabito et al., 2000 so that this ciation matches the reference list. Please confirm that the changes made are OK.	
Q4	Author: Reference Bhattacharya et al. (1998) has not been included in the reference list. Please supply complete publication details.	
Q5	Author: Reference Birgin et al., 2005 has not been included in the reference list. Please supply complete publication details.	
Q6	Author: Because .. rising? The meaning of this sentence is not clear; please rewrite or confirm that the sentence is correct.	
Q7	Author: Please define HONG.	
Q8	Author: Please provide accessed date for reference Neliben (1993).	
Q9	Author: Please check the abbreviations at the end of footnote section of Table 2 have been retained, even though not used in the table. Please confirm	

