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Abstract

To solve the manufacturer’s pallet-loading problem (MPLP), pallet-loading patterns with regular, sound and
optimum number layouts should be presented. In this paper, we present a pinwheel pattern as an alternative
solution to the pallet-loading problem. The definition, elements, categories, and practical advantages,
generating algorithms of the pinwheel patterns, are discussed, and a uniform notation is proposed. With the
ranges for all pinwheel instances within an area ratio no more than 76 boxes calculated, the study of geometry
shows that each pinwheel pattern has a specific range of box ratio, and it may achieve optimality. The pinwheel
pattern can be found for all non-prime numbers of boxes. Further discussions are focused on the dataset,
loophole constraint and asymmetric pinwheels. The study suggests that the pinwheel pattern is an advantageous
alternative to implement the MPLP.

Keywords: packing; pallet-loading pattern; geometry; pinwheel

1. Introduction

The manufacturer’s pallet-loading problem (MPLP; e.g. Dowsland, 1987a; Morabito and
Morales, 1998) isQ1 a well-known type of a two-dimensional cutting and packing problem, in which
a single pallet has to be loaded with a maximal number of identical boxes. The problem has many
practical applications in production, distribution and logistics. Dyckhoff (1990) defined this
problem as of type 2/B/O/C, which means the problem is to assign a maximal number of small
identical rectangles to a given large rectangle (representing the pallet). Wächer et al. (2007) further

Q2 define the MPLP as a two-dimensional, rectangular identical item packing problem, and noted it
as a layout problem regarding the arrangement of the (identical) small items on each of the large
objects with respect to the geometric condition.
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MPLP problems can be formulated as special 0–1 LP models, such as Beasley’s (1985).
However, because of the size of practical instances, 0–1 models are generally too large to be
computationally treated (Morabito et al., 2000). MoreQ3 , recently MPLP is just called the pallet-
loading problem (PLP). In the 30-year process of pursuing a PLP solution, although there are
exact algorithms (Dowsland, 1987a; Bhattacharya et al., 1998; Alvarez-Valdes et al., 2005;
Martins and Dell, 2008), heuristicsQ4 emerge more and often. To solve this problem, the optimal
number of boxes along with their loading pattern, as verification, should be figured out.
The pallet-loading pattern is an arrangement of boxes oriented orthogonally on the pallet to

achieve a regular, stable and optimum number layout. Many heuristics are concentrated on the
loading pattern to find the optimal solution, from the early four-block algorithms (Steudel, 1979;
Smith and de Cani, 1980) to G4 (Scheithauer and Terno, 1996), G5 (Martins and Dell, 2008),
M&M heuristic (Morabito and Morales, 1998) and the L approach by Lins et al. (2003). Besides,
there are metaheuristics based on tabu search (Pureza and Morabito, 2006), genetic algorithms
(Herbert and Dowsland, 1996) and strategic oscillation (Amaral and Wright, 2001). Several upper
bounds have also been proposed (Dowsland, 1984, 1985; Neli�en, 1995; Letchford and Amaral,
2001; Morabito and Farago, 1998), which consider the geometric structure of the problem and the
linearly relax integer programming formulations.
Recently, Martins and Dell (2008) have solved optimality for all instances of PLP with an area

ratio o101 boxes. Of the entire 3,080,730 equivalent classes of PLP instances, 86.2% of the
classes solved are within the one-block (58.9% alone) or the two-block patterns. Although one-
block and two-block patterns are common, they are usually of minor interest for pallet loading
because of weak-stability guillotine cuts (Dyckhoff, 1990) and lack of symmetry for two-block
patterns. Nevertheless, these classes and instances are based on the constraints proposed by
Dowsland (1984) with the pallet length to width ratio between 1 and 2, the box length to width
ratio between 1 and 4 and the pallet to box area ratio from 1 to 51 named as datasets Cover I, and
from 51 to 101 as Cover II (Neli�en, 1995). However, in practical works, pallet ratios are finite
and predetermined, while the box ratio may exceed 4. The more the area ratio, the more the
possibilities of one-block optimal patterns, which tend to be unstable and of less practical value.
Thus, it is time to re-examine the range of the box ratio and area ratio constraints for the PLP.
Although there are many different types of loading patterns (Arenales and Morabito, 1995),

the loading pattern alone seldom draws enough attention from the researchers, whose main
concern is algorithms for area utilization optimality. Because the optimality of all PLP instances
within an area ratio o101 boxes has finally been solved by the integration of many algorithms
(Martins and Dell, 2008), suitable alternatives must be selected and presented for implementation
on the request of the Operations Research methodology (Winston, 1994). PLP algorithms usually
lead to a pinwheel-loading pattern, which is a sound, textured and easy-to-implement pattern
with an even longer history than PLP (Bolz and Hagernan, 1958); although it may not be optimal
in the number of boxes loaded, it is a suitable alternative for implementation. Therefore, we
conducted this alternative study on pinwheel patterns, hoping to find their characteristics and
applications to PLP.
The structure of this paper is as follows: the next section describes the pallet-loading pattern, its

definition, characteristics and advantages. Next, a generic notation with six parameters for the
pinwheel patterns is proposed and the notation’s applications to the three pinwheel categories,
namely simple, block and nested pinwheels are identified. In the geometry study, the relationships
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between hole constraints, contour shape and box ratio are derived. With this geometry, the
dataset and computation of all pinwheel instances within an area ratio of no more than 76 boxes
are presented and discussed. Furthermore, asymmetric pinwheels are briefly examined. Finally,
they are summarized and some issues are proposed for future study.

2. PLP and the pinwheel pattern

For PLP problems, any (X, Y, a, b) instance is defined, where X and Y are the length and width of
the pallet, respectively, and a and b are the length and width of the box. It is assumed that at least
one box can be placed in the pallet (XXYXaXb). Without loss of generality, it is assumed that X,
Y, a and b are positive integers (Bischoff and Dowsland, 1982). Here, for convenience, we define
three ratios, which are just single Greek letters and different from Dowsland’s (1987b):
Pallet ratio:

a ¼ X=Y : ð1Þ
Box ratio:

b ¼ a=b: ð2Þ
Pallet to box area ratio:

g ¼ XY

ab

� �
; ð3Þ

where rb c gives the largest integer that does not exceed r. a, b and g are all � 1. g is also a
simple but powerful upper bound, and will be used as a measure for the size of the problem
(Bhattacharya et al., 1998)Q4 .

2.1. PLP loading pattern

In PLP, boxes loaded on pallets should be orthogonal and without overlapping; accordingly, it is
defined that the box is an H-box if it lies horizontally with its length a parallel to the length X of
the pallet (for convenience, X is also the horizontal axis), its width b is parallel to the width Y of
the pallet, and a vertically orientated box is called a V-box. A (homogeneous) block is defined as a
rectangular subset of boxes that have the same orientation (V-boxes or H-boxes) (Scheithauer
and Terno, 1996). Thus, the pallet-loading pattern is an arrangement of H-boxes/H-blocks and/or
V-boxes/V-blocks on the pallet.
The loading pattern of PLP can be classified as guillotine, first-order non-guillotine and superior-

order non-guillotine (Arenales and Morabito, 1995). A guillotine cut is a cut from one edge of a
previously cut rectangle to the opposite edge (Dowsland and Dowsland, 1992); guillotine cuts apply
to a rectangle orthogonally and produce two new rectangles. A pattern that results from successive
guillotine cuts is a guillotine pattern. A guillotine pattern consists of one or more blocks; thus, there
are one-block, two-block and three-block guillotine patterns. On the other hand, a first-order non-
guillotine pattern has more than two homogeneous blocks, and a cut is of first order if it produces
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five new rectangles arranged in such a way as to not form a guillotine-cutting pattern (Arenales and
Morabito, 1995). Early four-block heuristics and Morabito and Morales (1998) heuristic can
generate optimal first-order non-guillotine patterns. There is also a superior-order non-guillotine
pattern, which is a pattern that cannot be obtained by successive guillotine cuts and/or first-order
non-guillotine cuts. Many complex algorithms are based on the superior-order non-guillotine
pattern, such as the G and L algorithms mentioned above.

2.2. Pinwheel-loading pattern

The pinwheel pattern is a common and basic layout of H-boxes’ and V-boxes’ combined
configuration for PLP. The four-block algorithm and many other algorithms mentioned above can
produce pinwheel patterns. In a pinwheel pattern, there is a rectangular or a square contour and one
or more inner holes. The contour is a rigid and straight rectangle enclosed by the outward edges of
the outer boxes. A hole is an empty space left by the encompassed H-boxes and V-boxes in a loop.
These H-boxes and V-boxes are called H-leaves and V-leaves, and there are always four leaves in a
loop/hole unit. Figure 1 shows examples of a pinwheel pattern, which will be further discussed. For
the first four-box simplest pinwheel (Fig. 1a), if its outer corners are folded inward, then it looks
much more like the real pinwheel from which its name comes(Fig. 1b). Based on the leaves heights,
there are two styles of patterns: P1 and P3, which conform to Steudel’s heuristic (1979). If 1H is lower
than 2V in height, then it is a P1 style (Fig. 1c), otherwise a P3 style (Fig. 1d).
In Fig. 1, the most complicated pinwheel pattern is 1H, which has six loops and six holes in

two rows and three columns. In each loop, its H-leaf is an H-box, and the V-leaf a block of two
V-boxes. Each of the two adjacent loops is shared by a common leaf. Furthermore, two single
H-leaves are added in the northeast and southwest corners, and three single V-leaves forming an
L shape are added in the southeast and northwest corners; altogether, these loops and additional
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266x183 22 boxes
block pinwheel

245x230 20 boxes
block pinwheel

4V
3H

2V
1H

Pinwheel with corners
folded inward

257x114 40 boxes
nested pinwheel

305x110 33 boxes
nested pinwheel

250x185 25 boxes
nested pinwheel

620x95 20 boxes
block pinwheel

580x420 4 boxes
simple pinwheel

(b) (a) (c) (d) 

(e) (f) (g) (h)

Fig. 1. Some examples of pinwheel patterns; all outer red rectangles represent 1200 � 1000 pallets.
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H-leaves and V-leaves form the pattern’s complete rectangle. Thus, the pinwheel pattern is
characterized by the holes (loops) arrangement, leaves formation and orientation.

2.3. Practical application of pinwheel-loading pattern

The PLP is simplified as a two-dimensional layout problem for maximizing the area utilization.
However, after the optimality is reached, the implementation of the pallet layout should revert to
three dimensions again to consider the stacking layers and stability of the pallet load. This objective
conversely has other requirements on loading patterns. According to Liu and Hsiao (1997), the
degree of stability between any two adjoining layers is mainly determined by the loading pattern.
Besides the loading pattern, the stability of a pallet unit load also depends on the physical
characteristics of the product, the mode of transportation and other factors. If the loading patterns
are arranged properly, the unit load will be more stable. And Carpenter and Dowsland (1985) point
out that the suitability of the pallet-loading patterns should be determined with respect to a variety of
criteria affecting stability and clamp ability. Using compacting, centering blocks and distributing gap
procedures, Bischoff extended the Bischoff and Dowsland (1982) algorithm to generate more stable
layouts under the same criteria as those proposed by Carpenter and Dowsland. From the viewpoint
of loading and handling the unit load, besides the loading pattern, the arrangement of boxes must
meet the weight, stability and balance constraints (Gehring and Bortfeldt, 1997.)
The pinwheel-loading pattern, as a sound, textured and easy-to-implement pattern, has a longer

history of practical application (Bolz and Hagernan, 1958; Tompkins et al., 2003). Its practical
advantage lies in the following three aspects:

2.3.1. Stability
The stability of a pallet unit load is a prime requirement (Bischoff, 1991); proper loading stability will
increase shipping stability, help to minimize transportation damage and reduce the amount of
packing material needed (Liu and Hsiao, 1997). Because the pinwheel has a rectangular contour and
close-loop H-box- and V-box-interlaced texture with an R(180) symmetry rather than a reflection
symmetry, we can apply a reflection in the X- or the Y-axis for the second layer, then all alternative
layers are different with the box in one orientation interlocked by another orientated counterpart of
alternative layers. Therefore, a quite stable alternative layer stacking is made through the odd and
even layers’ interlocking. This accordingly contributes to the stability of the whole pallet unit load.

2.3.2. Dynamic stability and balance
The stability of pallet load is more important when in a dynamic moving vehicle or handling
situation. Both the pinwheel and the one-block pattern have a rigid rectangular contour, but the
pinwheel will be more stable when in a dynamic vibrating situation because it has no ‘‘perfect
column’’ structure like the one-block pattern. On the other hand, the pinwheel is a balanced
pattern with a weight distribution better than two, three and even more block patterns. Its
rotational symmetry means that the center of gravity is much closer to the contour’s centroid,
which can be easily derived from the examples in Fig. 1.
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2.3.3. Contour and multi-face
In a pinwheel, the holes are defined less than a box by area; likewise, the base contact criterion is
also satisfied. Furthermore, given a small enough hole (as in Fig. 1a, e, f, h), the pinwheel pattern
would have a rigid rectangular contour; in both the X and the Y direction, the contour possesses a
pair of perfectly flat opposite faces. Such pinwheel patterns are anti-slide and compact layouts
with unused space inside but these holes cannot be moved out to contour edges through a simple
‘‘pushing’’ procedure. This is advantageous to a practical pallet-loading or clumping situation,
where either palletizers, clump trucks or manual-loading methods are used to construct rigid and
compact-loading layers or to handle for storage, stacking, loading/unloading, shrink-wrapping,
etc. In a pinwheel pattern, the different outward faces of the outer boxes can be seen on each side
of the pinwheel contour; thus, the label and other information on the box can be read or scanned
more easily than homogeneous faces.
In all, the pinwheel pattern has practical advantages over the one-block pattern and other jag-

contoured block patterns. It trades a small reduction in the number of boxes fitted for a more
stable layout to implementation.

3. Pinwheel pattern by category

Because the pinwheel pattern has different holes (loops) arrangement, leaves formation and orientation,
we classify pinwheel patterns into three categories: a simple pinwheel, a block pinwheel and a nested
pinwheel, as shown in Fig. 1. These patterns become increasingly complex from a simple, block to
nested pinwheel; while the first type has a single hole/loop and simple leaves of a single box, the block
pinwheel has a single hole and at least a pair of leaves with blocks rather than single boxes, and the
nested pinwheel has many nested loops/holes with the holes lying in a line or forming a hole-lattice.
The pinwheel is a texture with single or multiple loops/holes; hence, two parameters i and j are

used to describe the hole layout, and the pinwheel loop consists of an interlaced H- and V-leaf, which
may be a box block or a single box. Then an H-leaf is defined as m rows n columns of H-boxes and a
V-leaf is defined as p rows q columns of V-boxes. Thus, a generic notation is recommended for a
pinwheel with a hole-lattice of i rows (here, rows are parallel to the secondary diagonal – i.e. from the
northeast corner to the southwest corner – of the contour rectangle formed by these boxes), j
columns and with an H-leaf of m rows n columns and a V-leaf of p rows q columns boxes:

½i; j��m� n� p� q:

For example, Fig. 1a shows a 1,1–1� 1–1� 1 simple pinwheel. If there is just one single hole, or to
say no nested loop, the item in the square bracket can be ignored; Fig. 1c shows a 2� 3–2� 2 block
pinwheel, and Fig. 1d and e shows a 4� 2–1� 3 and 4� 1–1� 6 block pinwheel, respectively.
However, the nested pinwheel should retain i and j parameters, for example, Fig. 1f shows a 4,1-
1� 1-1� 1, Fig. 1g shows a 1,2–3� 1–1� 4 and Fig. 1h shows a 2,3–1� 1–1� 2 nested pinwheel.
Also, by our notation, the hole-lattice is in i rows and j columns along the secondary diagonal,

and there are i H-leaves and j V-leaves on the horizontal contour edge, with a length of ina1jqb.
Likewise, the contour width is imb1jpa. Thus, the total boxes number N is:

N ¼ ði þ jÞðimnþ jpqÞ: ð4Þ

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

J. Yi et al. / Intl. Trans. in Op. Res. ]] (2009) 1–206

r 2009 The Authors.
Journal compilation r 2009 International Federation of Operational Research Societies

ITOR 715(B
W

U
K

 I
T

O
R

 7
15

.P
D

F 
14

-A
pr

-0
9 

21
:1

 5
14

43
7 

B
yt

es
 2

0 
PA

G
E

S 
n 

op
er

at
or

=
jn

m
.C

hr
is

tin
a)



Especially, for an m� n–p� q block pinwheel, the total box number is 2(mn1pq) and a simple
pinwheel with just four boxes.

3.1. Simple pinwheel

In a simple pinwheel, four boxes as leaves are arranged successively in a close-loop style, leaving a
central hole. Both the contour of the pinwheel and the only central hole are squares. Simple
pinwheels are 901 rotationally symmetric by the centroid; hence, denoted as R(90). Because of the
rotational symmetry, without loss of generality, we define the box on the left lower corner as the
first leaf and it lies horizontally; hence, 1H. The second box lies vertically on the right lower corner
(2V), the third horizontally on the right upper corner (3H) and the fourth finally on the left upper
corner (4V), as shown in Fig. 1a in an anticlockwise sequence. The simple pinwheel pattern is a
first-order non-guillotine pattern. A special case is when the area of the hole is zero. In fact, it is a
guillotine pattern with square boxes.

3.2. Block pinwheel

Block pinwheels (Fig. 1c–e) differ from simple pinwheels in that at least a pair of leaves in a block
pinwheel is no longer single boxes, but blocks with guillotine patterns of identical and
uni-orientated boxes. A block pinwheel has the same anticlockwise leaf sequence as a simple
pinwheel. The pattern contour of the block pinwheel is a rectangle. A rectangular contour is
better and more practical for rectangular pallets, namely, 1200� 1000mm2 International
(approximately, including the 48� 40 in.2 USA common pallet) and 1200� 800mm2 Euro types.
In a rectangle-shaped block pinwheel pattern, the pair of horizontal leaves is the same, and so is
the vertical pair. Hence, the block pinwheel is 1801 rotationally symmetric by the centroid,
denoted as R(180). The block pinwheel is also a first-order non-guillotine pattern and a natural
outcome of many block-based algorithms (Neli�en, 1993). There are special cases when the area
of the hole is zero and it is still a guillotine pattern. This is only possible when the box ratio is
an integer.
As stated above, the values of i and j for the block pinwheel are all 1s, and so a shorter version

of our notation may apply, that is m� n–p� q. If m5 q and n5 p, it is a square-shaped pinwheel,
which is a better fill to the JIS (1100� 1100 or 1140� 1140mm2) square pallet. A simple pinwheel
is just a special 1� 1–1� 1 instance of the block pinwheel.

3.3. Nested pinwheel

By our classification, for a nested pinwheel pattern, one or more leaves of the pinwheel are further
nested by other pinwheel(s), and more boxes/blocks are added to form a complete rectangle. Once
they are nested, there will be more than one hole and each hole should be encompassed by a loop
of leaves while a common leaf is shared by two adjacent loops.
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Based on the leaf conformation, nested pinwheels are shown in two subtypes: nested simple (S)
and nested block (B). In a nested simple pinwheel (see Fig. 1f ), each leaf only contains a single
box as does the simple pinwheel. If the pinwheel leaf is not a block but further nested by a small
pinwheel, this will be a fractal. However, it is beyond the scope of our discussion because our box
is defined and beyond partition. Besides, based on the complexity of the hole lattice, the nested
pinwheels are also shown in two subtypes: one-dimensional and two-dimensional. The one-
dimensional lattice (1DL) is just a line of holes with either i5 1 or j5 1. But i and j cannot be both
1s; otherwise, it is a block pinwheel. The two-dimensional lattice (2DL) is an i-row and j-column
array of holes with both i, j41. Thus, there are four subtypes of nested pinwheels, which are 1DL/
S (Fig. 1f ), 1DL/B (Fig. 1g), 2DL/S (Fig. 2a and c) and 2DL/B (Figs. 1h and 2b). 1DL/B nested
block pinwheels differ from 1DL/S nested simple pinwheels in leaf conformation, just like the
block pinwheels differ from simple pinwheels. The 1DL nested pinwheel has leaves (block or box)
shared along the diagonal; such a shared leaf is also called a diagonal block (Exeler, 1988) or a
hollow block (HB) in Martins and Dell’s HB heuristic (2008), both Exeler’s and HB heuristics can
generate such styles. The number of H-boxes and V-boxes for 1DL conforms to the theorem 2 of
Martins and Dell’s (2008) paper. While 1DL nested pinwheel patterns are first-order non-
guillotine patterns, 2DL nested pinwheel patterns are superior-order non-guillotine patterns that
are more complex. To date, we have not yet found any heuristic, metaheuristic or exact algorithm
that can generate such a 2DL pattern. No matter what the four subtypes are, a nested pinwheel
has an R(180) symmetry, and its total box number is applied by Equation (4). Especially, when
m5 n5 p5 q5 1, the box number in a 1DL/S or 2DL/S nested simple pinwheel is (i1j)2.
Both the block pinwheel and the nested pinwheel are called split pinwheels in the Early Material

Handling Handbook by Bolz and Hagernan (1958). At that time, there were no computers to
generate the complex non-guillotine patterns; their patterns emerged from intuition and
experience. This shows that the pinwheel pattern is common and of practical use (Tompkins et
al., 2003). The beauty and accessibility of these geometric patterns makes the pinwheel pattern a
preferable alternative pattern in pallet loading.

4. Geometry of pinwheel

The discussion of pinwheel geometry will be helpful to understand what the structural requirement
for a pinwheel pattern is, and in what range the box ratio required by a specific pattern is.
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2,2-1x1-1x1 2DL/S
nested pinwheel

 2,4-1x3-1x1 2DL/B
nested pinwheel

5,3-1x1-1x1 2DL/S
nested pinwheel

(a) (b) (c)

Fig. 2. Some examples of two-dimensional lattice nested pinwheels from left to right of the corresponding minimal size

instances are (14,14,4,3), (102,63,11,9) and (81,71,12,7).
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4.1. Hole constraint

In a pinwheel, it was generally supposed that the central hole should be small enough not to allow
any box to fill in, i.e. the area of the hole should be less than a box’s area:

pa�mbj j na� qbj j)ab:

By the pinwheel definition, if the first leaf (1H) is lower than the second leaf (2V), that is, a P1
style with pa�mb40 and na� qb40 or it is a P3 style with pa�mbo0 and na� qbo0. Thus,
there is always:

ðpa�mbÞðna� qbÞ)ab: ð5Þ
With a5 b, b substitutes a in inequality (5), then

ðpb�mÞðnb� qÞ)b:

That is,

pnb2 � ðmnþ pqþ 1Þbþmq)0: ð6Þ
Thus, we have

D ¼ b2 � 4ac ¼ ðmnþ pqþ 1Þ2 � 4mnpq ¼ ðmn� pqþ 1Þ2 þ 4pq:

Because m, n, p and q are all integers no less than 1, DX0, then the b range is within

mnþ pqþ 1�
ffiffiffiffi
D
p

2pn
)b)

mnþ pqþ 1þ
ffiffiffiffi
D
p

2pn
: ð7Þ

The value of root expression may be o1 but by definition bX1. Thus, we can have the box
shape ratio range for a given pinwheel pattern.
For a simple pinwheel, with m5 n5 p5 q5 1, b42.618. This means that the box ratio cannot

exceed 2.618. Otherwise, the area of the central hole is greater than the area of a box, and a box
may (but not certainly can) be added on the hole. For example, if b5 2.5, and the largest possible
box size is 715� 285 on a 1200� 1000 pallet. The area of the central hole is (715–285)2 5 184,900,
which is less than the area of a box (203,775).

4.1.1. Rigid condition
As shown in Figs. 1c, d, g and 2b, the holes are not rigid because a push inward can change the hole
and thus create a ragged pinwheel contour. Here, a rigid condition should be derived. If the holes are
square, as long as the inequality (5) is a strict inequality without equality, then the hole is rigid, as
shown in Figs. 1a, f and 2a, c. Otherwise, four cases should be considered. The rectangular hole can
have only two orientations, namely a H-hole (with a longer horizontal edge) and a V-hole, while
there are two pinwheel pattern styles P1 and P3; thus, the four cases are P1-H, P1-V, P3-H and P3-V.
For a P1-H hole, if na� pboa, then the hole is small enough to slide, the pinwheel pattern is rigid.
Thus, bop/(n� 1). Similarly, the rigid condition for the P1-V pinwheel is bo(m11)/p; for the P3-H
pinwheel it is b4(q� 1)/n; and for the P3-V pinwheel it is b4(m� 1)/p. Given the rigid condition
and b range, rigid pinwheels can be determined.
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4.2. Contour shape

As mentioned above, for an i, j–m� n–p� q pinwheel, a total number of (i1j) (imn1jpq) boxes
construct i� j pinwheel loops, form a rectangular pattern with a length of (ina1jqb) and a width
of (imb1jpa). Let d be the contour rectangle shape ratio, and with a5 bb, then:

d ¼ i � n � aþ j � q � b
j � p � aþ i �m � b ¼

i � n � bþ j � q
j � p � bþ i �m : ð8Þ

By definition, d should be no less than 1; otherwise, it can be turned 901 around to have a value41.
On the other hand, given the pallet ratio a, if the pinwheel pattern fills the pallet deck board

perfectly with d5 a, then Equation (8) can be transformed to compute the b value for such
a pinwheel with a perfect pallet contour. Let b0 be such a perfect value, then the equation is
as follows:

b0 ¼
i �m � a� j � q
i � n� j � p � a : ð9Þ

Also, the d value can be compared with the a value of any given X� Y pallet. In addition to the
perfect fill, in most cases there will be some empty space along the X or the Y edge of the pallet. If
d4a, then

a ¼ X � b
i � n � bþ j � q ; ð10; Þ

otherwise,

a ¼ Y � b
i � nþ j � p � b : ð11Þ

These equations are the foundation for the calculations.

5. Calculation and discussion

Given the above pinwheel geometry, the b range for a reasonable pinwheel can be figured out for any
pinwheel instance of i, j, m, n, p,and q combinations, and given a b value within that feasible range,
an optimal box size on a given pallet dimension may be obtained. This is a reverse way to find the
optimal pinwheel patterns by enumerating all pinwheel instances of i, j, m, n, p and q combinations.

5.1. Dataset

As mentioned above, the two datasets for PLP were Cover I with 14a42, 14b44 and 44go51
and Cover II with 514go101 (Dowsland, 1984; Neli�en, 1995). These two sets of restrictions on
pallet and box dimensions have always been used by other authors (e.g. Neli�en, 1993; Scheithauer
and Terno, 1996; Morabito and Morales, 1998; Alvarez-Valdes et al., 2005; Birgin et al., 2005; Lins
et al., 2003; Martins and Dell, 2008). However, theQ5 b range of 1–4 is derived from the box range with
a common length 200mm4a4600mm, with width 150mm4b4450mm (Dowsland, 1984). In
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practical situations, especially in factories, the box range varies and can exceed the limit significantly;
thus, b44 limits many practical applications. Also, Alvarez-Valdes et al. (2005) point out that the
definition of sets Cover I and Cover II is subject to some ambiguity. Sometimes, an instance satisfies
the conditions defining the set but another equivalent instance does not. As one-block optimal
patterns dominate PLP solutions (Martins and Dell, 2008), they are more likely to appear with a
higher g value. We think that the go51 is slightly less and go101 is slightly more, and an average
g476 of both Covers may be better. The relationship of the box ratio and the area ratio also needs to
be re-examined. Hereby, we propose a unique dataset with the range of 14b410 and 44g476.
Our calculations are all based on this new dataset. We have calculated all the 10,860 feasible

instances of i, j, m, n, p, and q combinations in the above-proposed range. Also, for the real
application of pinwheel patterns in pallet loading, we choose the ISO 1200� 1000mm2 pallet
(P1210), the Euro 1200� 800mm2 pallet (P1208) and the Japan 1100mm square pallet (P1111).
Their a values are 1.2, 1.5 and 1.0, respectively. Because Martins and Dell (2007) have solved all
the minimal size instances (MSI) of PLP, which is easy to obtain from their website, http://
www.palletloading.org, we use these real PLP instances on three common pallets directly, and
some examples and their MSIs are also listed in the tables below.

5.2. ‘‘Perfect’’ pinwheel

Combining Equations (7) and (9), pinwheels with a contour perfectly filled to a given pallet (hence
called ‘‘perfect’’ pinwheels) can be computed by enumerating all possible instances of i, j, m, n, p
and q combinations. After the perfect b0 is determined, the PLP instance can be calculated based
on Equations (10) and (11). Table 1 sums up these ‘‘perfect’’ pinwheels by category and by pallet,
and Fig. 3 shows their distribution on the box number and box ratio matrix. However, some of
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Table 1

‘‘Perfect’’ pinwheel by category and by pallet

Simple Block Nested Total

1DL 2DL

Instances 1 7891 2668 300 10,860

P1111 perfect 1 26 122 16 165

b044 0 0 38 0 38

b0410 0 0 2 0 2

Max b0 2.718 4 11 3 11

P1208 perfect 0 80 78 14 172

b044 0 44 14 3 61

b0410 0 23 2 0 25

Max b0 0 29 12 8 29

P1210 perfect 0 62 113 14 189

b044 0 34 44 0 78

b0410 0 19 2 0 21

Max b0 0 25 10.86 4.125 25

Summary 1 168 313 44 509
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these pinwheels may not be optimal because multiple holes may waste considerable inner area.
Only if the rigid conditions are satisfied, are the perfect pinwheels rigid and anti-slide.
In Table 1, it can be seen that the ‘‘perfect’’ pinwheels appear most likely to be 1DL nested

pinwheels and the next is block pinwheels; these first-order non-guillotine patterns count for
95.5% of the total ‘‘perfect’’ pinwheels. By pallet, the square pallet P1111 is more difficult to fill
perfectly, especially with long boxes (Max b0 is only 11). While Morabito et al.’s (2000) research
shows that the P1210 pallet has the highest mean area utilization, our computation shows that it is
also the most easy to fill perfectly. Among these 509 pinwheels, the largest b0 5 29 is for 9� 1–
1� 28, 74 boxes block pinwheel with a PLP instance of (1200, 800, 610 and 21), and it is optimal
with a minimum size instance of (57, 38, 29 and 1). Using b0 values, perfect pinwheels with b044
account for about one-third, and pinwheels with b0410 account for nearly one-tenth of all
pinwheels. This indicates that the percentage of the box ratio 44 is substantial. Figure 3 further
illustrates the distribution of box ratios and shows that 490% of the pinwheels lie within the
b410 area (below the dashed line), while the bo4 area is the densest area.

5.3. b range

In most cases, the pinwheel contour will not fill the pallet perfectly even though the pinwheel
pattern can be optimal to the PLP. Usually, a range is set to the contour shape ratio d, that is,
dA[(1� l)a, (11l)a], where lmay be 5–10%. The data for some pinwheel examples listed in Table
2 are computed based on the above � l relaxation. Again, the pinwheel pattern may not be
optimal, and the g bound, and Martins and Dell’s results are listed as a comparison. Here, the b
range is computed by Equation (7) along with bX1 by definition. In Table 2, there are 35
pinwheel examples for loading on the common pallets, while only 14 pinwheels are optimal. From
the ‘‘Difference’’ column of Table 2 we can see that the difference of the pinwheel’s box number to
optimality is small. It seems that when the b value is larger, the pinwheel pattern tends to be
optimal and usually with a block pinwheel pattern; when the box number is larger, the pinwheel
pattern tends to non-optimal. Please note that for some instances, they may have multiple optimal
patterns. For example, in line numbers 6, 13 and 21, optimal solutions are pinwheel patterns,
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Fig. 3. Box number and b value distribution for pinwheels with a perfect pallet contour circle (o) on the horizontal axis

indicates a prime number, which is impossible in a pinwheel.
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block patterns or guillotine patterns. Note, in the third row of the table, a nine-box 2,1–1� 1–
1� 1 pinwheel has the smallest odd number of boxes among any of the pinwheel patterns. Also,
there are 13 ‘‘perfect’’ pinwheels in Table 2.
In all, our two types of results verify our suggested box ratio limit to 10; also, this higher box

ratio is not rare in real-life box dimensions. BecauseQ6 there are hard examples that many
algorithms are working for, how about the new b limit, are there any new hard classes rising? This
question should be answered in the future.
So far, the pinwheel pattern can be constructed by any number of boxes, except for those with

prime numbers. For each i, j, m, n, p, q combination, there is a b range for the hole smaller than a
box, and a rigid condition requires further b constraints. It may be an optimal pattern only when
its contour ratio is close to the target pallet ratio. Our pinwheel pattern is not to pursue optimal
box numbers but a near-optimum solution with a satisfactory number and pattern shape.

5.4. Slack of hole constraint

However, with our hole constraint, a special type of nested pinwheel – a pinwheel embedded
completely within another pinwheel – cannot be formulated. Such ‘‘embedded pinwheel’’ examples
can be found in Dowsland (1984, figs. 1b and 2) and Neli�en’s (1993, fig. 19) examples of (23,23,4,3)
or (40,40,7,5) instances by a complex block heuristic. These examples are shown in Fig. 4 below.
Thus, we supplement our notation system by naming the ‘‘embedded pinwheel’’ as m1� n1–

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

(23, 22, 4, 3) embeded pinwheel
(42 boxes) Dowsland (1984) Fig 1b*

(53, 51, 9, 7) embeded pinwheel
(42 boxes) Dowsland (1984) Fig 1b**

(63, 60, 11, 8) embeded pinwheel
(42 boxes) Dowsland (1984) Fig 2**

(23, 23, 4, 3) embeded pinwheel
(44 boxes) Nelissen (1993) Fig 19a

(23, 23, 4, 3) embeded pinwheel
(44 boxes) Nelissen (1993) Fig 19b

(a) (b) (c)

(d) (e)

Fig. 4. Embedded pinwheel examples. �New finding from the original pattern structure; ��revised based on the original figure.
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p1� q1! m2�m2–p2� q2, where the arrow indicates the embedding direction: the former
small pinwheel is embedded into a later larger one. Then the Dowsland examples are denoted
as 3� 1–2� 2! 1� 4–5� 2 and 2� 1–2� 1! 1� 5–6� 2, respectively, Neli�en’s as 3� 2–
2� 3! 1� 5–5� 1 and 1� 1–1� 1! 5� 2–2� 5. Only in a few cases, can the hole space of the
outer loop be fully filled by the inner pinwheel, as shown in Fig. 4a, d and e; if it cannot be fully filled,
the pattern contour is indeed jagged by pushing inward.

6. Asymmetric pinwheels

The pinwheel, as its name suggests should be symmetric to rotate. However, if the concept is
extended to an asymmetric pinwheel, some interesting results for the loading patterns may be
obtained. If a pinwheel does not have any identical leaves or full number of leaves (including sharing
of leaves by adjacent loops) in a loop, then we call it an asymmetric pinwheel. It can be categorized
as an asymmetric block, asymmetric nested or an incomplete pinwheel, as shown in Fig. 5. These
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35
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39
40
41
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43
44

(1200, 1000, 345, 160) incomplete
(21 boxes) Morabito et al

(2000) Fig 3a

(57, 44, 12,5) asymmetric nested
(41 boxes) Morabito & Morales

(1998) Fig 6c

(42, 39, 9, 4) asymmetric nested
(45 boxes) Morabito & Morales

(1998) Fig 2b

(1000, 1000, 205, 159) asymmetric
block (30 boxes) Bischoff & Dowsland

(1982) Fig 3b

(43, 26, 7, 3) asymmetric nested
(53 boxes) Lins et al. (2003) Fig 9

β =1.5 23 boxes incomplete
Nelissen (1993) Fig. 2

(a) (b) (c)

(d) (e) (f)

Fig. 5. Examples of asymmetric patterns (pushed and compacted).
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figures are from the literature, but the patterns are condensed to compact structures, which reveal
some jagged edges.
As early as in Steudel’s (1979) paper, his projected procedure of the two-phase solution

produces an asymmetric pinwheel with four different leaves and jagged contour edges. Also, there
was a misleading layout pattern shown in Fig. 6a. This is an asymmetric pinwheel, but it appears
as though the pattern has a perfect rectangular contour. Indeed, the technical in-scale drawing of
the pattern shown in Fig. 6b reveals the eye illusion of the early computer line text printed figure –
it has a clear jagged edge on the right! However, Steudel’s figure also gives us a hint: an
asymmetric pinwheel without a rectangular contour is also acceptable in practice, as long as the
jagged teeth are within certain limits.
An asymmetric block pattern can be described using a notation as m1� n1–p1� q1–m2� n2–

p2� q2, and it starts from the lower left leaf to the upper left, counter-clockwise. The length of the
opposite edges can be lightly different; here, we suggest a 3% allowance in a contour edge jag. For
example, the jag of Steudel’s asymmetric block is 2.08%. The contour-jagged asymmetric block
pinwheel pattern is the outcome of the four block algorithms (Steudel, 1979; Smith and De Cani,
1980) and it is a first-order non-guillotine pattern.
Asymmetric nested pinwheel patterns may outperform other asymmetric ones because they may

have a completely rectangular contour, as shown in Fig. 5b. For any nested pinwheel only if both i
and j are 41 (with a hole lattice) will it be a superior-order non-guillotine pattern. However, the
symmetric pinwheel notation cannot apply to this asymmetric one, but this similar pattern type
also applies to asymmetric nested pinwheels, as in Fig. 5b, it is a first-order non-guillotine pattern
for it only has a line of holes, while Fig. 5c is a superior-order non-guillotine pattern as it has a
hole lattice. These complete rectangular-contoured patterns can be generated by the L-approach
(Lins et al., 2003) and HONGQ7 (Martins and Dell, 2008). It appears that the L-approach is more
likely to generate rectangular contours.
On the other hand, an incomplete pinwheel is a guillotine pattern, which indeed is a

combination of pinwheels and/or some other pinwheel-loop-free blocks. At least there is a
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Box size: Length 8.5 in, width 7.5 in
29 boxes a layer on a 40x48 in pallet

(a) (b)

Fig. 6. Steudel’s example pattern (a) and the real-scale drawing (b).
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guillotine cut traversing to one pair of the contour edges (see Fig. 5e and f for example). Two-
block, three-block (Neli�en, 1993), G4 (Scheithauer and Terno, 1996) and Morabito and Morales
(1998) recursive heuristics generate incomplete pinwheel patterns.
As calculated in the symmetric pinwheel above, the box number for any symmetric pinwheel

pattern cannot be a prime number. In the 4–76 range, there are 19 prime numbers, which accounts
for a quarter of the range. Namely, they are 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,
67, 71 and 73 (as the circles shown on the horizontal axis of Fig. 3). These numbers can only be
rounded to even numbers for symmetric pinwheel patterns; nevertheless, these numbers can be
loaded into asymmetric pinwheel patterns without any rounding. The asymmetric pinwheel
patterns can reach optimality with these prime numbers of boxes. Examples are (14, 10, 3, 2)
instances with 23 boxes optimal (Dowsland, 1984), (57, 44, 12, 5) with 41 boxes (Scheithauer and
Terno, 1996) and (124, 81, 21, 10) with 47 boxes (Neli�en, 1993). Because all difficult equivalent
classes of PLP instances with a ratio o101 are solved by special heuristics (Martins and Dell,
2008), some attention to these prime number instances and their layout pattern may be of interest
and may be worthwhile.

7. Concluding remarks

In this paper, we presented the pinwheel pattern as an alternative to the PLP. The definitions,
elements and practical advantages, generating algorithms of the pinwheel patterns, were
discussed. A uniform notation is proposed along with the identification of three types of
symmetric pinwheels: simple, block and nested. With this notation, any pinwheel pattern can be
defined and generated. The geometry of pinwheels is also studied and it provides the basis for our
computation; it shows that each pinwheel pattern has a range of box ratio, and a pinwheel pattern
may achieve optimality, especially for a larger box ratio. The ranges for all pinwheel instances
with an area ratio of no more than 76 boxes are calculated and especially those pinwheels that can
fill the pallet perfectly are calculated and investigated. A pinwheel pattern can be found for all
non-prime number of boxes. Furthermore, we identified the practical advantages of a pinwheel
pattern as: a uniform notation, an orderly textured structure, an R(180) rotational symmetry and
a sound contour. These advantages enable pinwheel patterns to be a good practical solution. As
discussed in the last section, the asymmetric pinwheel extends the application of the pinwheel
pattern: the box number can be a prime number for an asymmetric block pinwheel, a nested
pinwheel and an incomplete pinwheel; and they can be easily found by many existing algorithms.
The characteristics of the pinwheel pattern are finally summarized in Table 3. With this

systematic analysis, we conjecture that the pinwheel pattern is an advantageous alternative
solution to the MPLP. It can be used widely by manufacturers and distributors and carriers in
factories, trucks, vehicles, warehouses and distribution centers, and it is also helpful in the
packaging design.
Nevertheless, a drawback of the pinwheel is that it cannot guarantee optimality in area

utilization. Also, the box ratio is too short ranged to meet the requirement of all instances. Many
existing algorithms can generate a pinwheel pattern, but no algorithm is found to be able to
generate it with certainty. In our study, some issues are also raised, such as the old ranges of the
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box ratio (from 1 to 4) need to be re-examined: what is the best pattern for those situations with
prime numbers of boxes? With these questions answered, we may set the epilogue of the MPLP.
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Alvarez-Valdes, R., Parreñob, F., Tamarita, J.M., 2005. A branch-and-cut algorithm for the pallet loading problem.

Computers & Operations Research 32, 3007–3029.

Amaral, A., Wright, M., 2001. Experiments with a strategic oscillation algorithm for the pallet loading problem.

International Journal of Production Research 39, 2341–2351.

Arenales, M., Morabito, R., 1995. An and/or-graph approach to the solution of two-dimensional non-guillotine cutting

problems. European Journal of Operational Research 84, 599–617.

Beasley, J.E., 1985. An exact two-dimensional non-guillotine cutting tree search procedure. Operations Research 33, 49–64.

Bischoff, E.E., 1991. Stability aspects of pallet loading. OR Spectrum 13, 189–197.

Bischoff, E.E., Dowsland, W.B., 1982. An application of the micro to product design and distribution. Journal of the

Operational Research Society 33, 271–281.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

Table 3

Pinwheel-loading pattern in summary

Type Notation Box number Symmetry Contoura Patternb Example

Simple 1 � 1–1 � 1 4 R(90) S First Fig. 1a

Block m � n–p � q 2(mn1pq) R(180) R First Fig. 1c, d, e

Nested

1DL/S i,1–1 � 1–1 � 1 or (i11)2 or R(180) R First Fig. 1f

1, j–1 � 1–1 � 1 ( j11)2

1DL/B i,j–m � n–p � q (i1j) (imn1jpq) R(180) R First Fig. 1g

(i5 1, j41 or j5 1, i41)

2DL/S i,j–1 � 1–1 � 1 (i1j)2 R(180) R Superior Fig. 2a, c

2DL/B i,j–m � n–p � q (i1j) (imn1jpq) R(180) R Superior Fig. 1h, Fig. 2b

Embedded m2 � n2–p2 � q2 !
m2 � n2–p2 � q2

2(m1n11p1q1)

12(m2n21p2q2)

R(180) Rmj First Fig. 4

Asymmetric

Block m1 � n1–p1 �
q1–m2 � n2–p2 � q2

m1n11p1q11

m2n21p2q2

No JR First Fig. 5a

Nested NA NA No Rmj First or

Superior

Fig. 5b, c, d

Incomplete NA NA No JR Guillotine Fig. 5e, f

aContour type: S, square; R, rectangle; Rmj, rectangle (may jagged); JR, jagged rectangle.
bPattern type: First, first-order non-guillotine; superior, superior-order non-guillotine.
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