A queuing system is a model of the following structure: Customers arrive and join a queue to await service by any of several servers. After receiving service the customers depart the system.
A fundamental result of queuing theory is known as Little’s Law, after the man who provided the first formal proof of a well-known piece of folk-wisdom [36].
Theorem 2.1 (Little’s Law). For a queuing system in steady state the average length L of the queue equals the average arrival rate λ times the average waiting time W. More succinctly:
Generally the rate λ of flow is determined by the customers, and so Little’s Law tells us that a
warehouse holding lots of inventory (large L) will see most of it sitting (large W ).
Here is an example of how we can use Little’s Law to tease out information that might not be immediately apparent. Consider a warehouse with about 10,000 pallets in residence and that turn an average of about 4 times a year. What labor force is necessary to support this? By Little’s Law:
Little’s Law can be very useful like this. Another typical use would be to compute an estimate of
inventory turns after simply walking through the distribution center: One can estimate inventory (queue length) by counting storage positions, and rate of shipping (throughput) by observing the shipping dock, and then apply Little’s Law.
What makes Little’s Law so useful is that it continues to hold even when there are many types of customers, with each type characterized by its own arrival rate λi, waiting time Wi, and queue
length Li. Therefore the law may be applied to a single SKU, to a family of SKUs, to an area within a warehouse, or to an entire warehouse.
1 回答
2.5 仓库其实是个队列系统
一个队列系统是这样的:客户来了,加入等待的队列中,然后由有空的伺服机松为其提供服务,客户接受完服务后,离开系统。
队列的其中一个理论被称为利特尔法则(Little 's Law),是因为利特尔总结,并证明了它。
定理2.1(利特尔定律):对于一个稳定的队列系统来说,队列的平均长度L等于平均抵达速率(w)乘以平均等待时间(w),更简洁地说:
L = λW.
可以把仓库粗略地看作为一个队列系统,它的客户是SKU,SKU到收货码头即加入队列(即存入仓库中)然后等待服务(运输)。如果仓库业态稳定 ,那么到货与发货速率是基本相当的。然后应用利特尔法则,仓库中的平均库存量等于每天货品入库量乘以平均库龄。
通常来说,货品入库量是由客户决定的,所以利特尔法则告诉我们,一个拥有大量库存(大L)的公司将会有很长库龄(大W)。这里有一个例子,说明我们如何利用利特尔法则来找出其隐含的信息。比如,假设一个仓里库存约有10,000托,平均每年周转4次。那么,将需要多少人力来支持这一点?
10,000 托 = λ(1/4 年).
因此
λ ≈ 40,000 托/年.
又按,单班工作,每班8小时,每年约250个工作日来计算,全年工时约为2000小时,即
λ ≈ 20 托/小时.
请注意,我们刚刚通过简单对托盘数和年库存周转率的估算,计算出了人力需求。利特尔法则还可以用于计算配送中心的库存周存率,以库位数来估计出库存能力(队列长度),再观察进出货码头来估算出速度(吞吐量),然后应用利特尔法则来计算出周转率。
这家伙很懒,还没有设置简介