锂离子电池仓储消防指南

felix
felix 这家伙很懒,还没有设置简介

0 人点赞了该文章 · 1037 浏览

执行摘要 - 锂离子电池仓储存的消防指南 作者:Tom Long和Andrew Blum  Exponent,Inc   本文总结了为确定盒装锂离子电池仓储存防火指导而进行的防火测试。有关完整报告,请参阅参考资料1.  该项目的主要方法包括双管齐下的方法来分析纸箱中锂离子电池的火灾危险:(1)比较大幅面聚合物袋的自由燃烧可燃性特征锂离子电池以FM Global标准商品和先前测试的小型锂离子电池在机架存储阵列2,3和(2)大规模防火测试中评估吊顶式喷水灭火器的性能格式聚合物袋锂离子电池。实验方法的目标是最大限度地应用成功的大规模火灾测试结果。 该项目的其他任务包括(3)评估电池托盘负载内部点火的影响与通常用于大规模火灾测试的外部点火的影响,以及(4)评估喷水器在抑制火灾时的有效性。电池参与的后期比在大规模测试中可以实现的那样。这些任务加强了成功进行大规模火灾测试所产生的喷水灭火保护指导。本报告中的所有数据,测试说明,数据分析和数据均由FM Global提供。Exponent依靠FM Global测试报告题为“开发锂离子电池散装储存保护建议:喷火试验”作为本报告的基础4。 该项目是与财产保险研究小组合作并与消防研究基金会合作进行的。该项目的前两个阶段包括使用和危害评估报告5(第一阶段)和一系列减少商品的火灾测试,将普通锂离子电池/产品的可燃性特征与FM Global标准商品(第二阶段)进行比较2 ,3。这些测试表明,小型(2.6 Ah)锂离子电池的大容量存储表现出类似的火灾增长,导致第一次喷洒器操作与其他更常见的纸箱商品一样。此外,确定锂离子电池参与完全发展的火灾所需的时间约为五分钟。这些结论为散装储存中小型锂离子电池的喷淋保护建议奠定了基础,其目标是在预期的锂离子电池参与时间之前抑制火灾。 可用于该项目的锂离子电池是20安培小时(Ah),3.3伏(V),具有磷酸铁锂(LiFePO4)化学的聚合物袋电池。电池尺寸约为6.0×9.0×0.3英寸,充电状态(SOC)标称值为50%。包装由瓦楞纸板箱组成,其中装有20个电池,由10层塑料隔板隔开。这种封装和电池布局与先前测试的小型锂离子聚合物电池2,3一致。 测试了20 Ah锂离子聚合物袋电池的自由燃烧可燃性特征,并与FM Global的标准商品和Phase II 2,3的小型锂离子电池进行了比较。该测试被称为“减少商品”测试,用于估算洒水仓库火灾情景中第一次喷水器操作时出现的火灾危险。测量重点是在免费燃烧机架存储火灾测试期间每种商品的火灾发展和锂离子电池的电池参与时间。与以前的减少商品测试相比,FM Global从这些测试中报告的主要发现包括:
  • 在本研究中使用的装盒式20 Ah大型电池比之前测试的2.6 Ah小型圆柱形和聚合物袋电池具有更高的危险性。
  • 产品包装(瓦楞纸板容器和塑料隔板)被认为是驱动锂离子电池存储危险的关键因素。虽然瓦楞纸板箱被证明主导了最初的火灾增长,但纸箱内的塑料含量被证明是整体商品危害的驱动因素。
  • 由于塑料在火灾发展早期的参与,含有大量塑料的盒装电池表现出类似的释放能量的快速增加。
  • 含有极少量塑料的盒装电池(例如在阶段2中测试的小型圆柱形和聚合物锂离子电池)表现出能量释放的较慢增加和由于电池加热导致的电池参与延迟。在这种情况下,塑料分隔器比用于20 Ah聚合物袋电池的重塑料分隔器具有更小的可燃负载。
通过大规模洒水火灾试验评估了天花板级自动喷水灭火保护装置的性能。该测试评估了上述电池类型和存储在纸箱中的SOC,高度为15英尺,天花板高度为40英尺的三层高架存储阵列。快速响应,下垂式喷头提供保护,具有165ºF额定链路,K系数为22.4 gpm / psi 1/2。FM Global从这次大规模测试中报告的主要发现包括:
  • 在高达40英尺的天花板高度下,最高15英尺的存储可以通过由下垂喷头组成的消防喷淋系统得到充分保护,该喷淋头的K系数为22.4 gpm / psi 1/2,额定温度为165ºF,RTI为50 ft 1/2 S 1/2,安装在10英尺×10英尺的间距,工作压力为35 psig。
  • 通过大规模防火测试建立的保护指导可以合理地应用于之前为该项目测试的小型(例如2.6 Ah圆柱形和聚合物袋)锂离子电池。
执行了另外两项任务以加强上述喷水灭火保护指导。第一次评估评估了纸箱内一个或多个电池热失控导致点火的可能性和影响。第二部分分析了喷淋水在电池参与后期抑制火灾的效果,而不是在大规模试验中实现的。FM Global从这些额外的分析/测试中报告的主要发现包括:
  • 对于本项目中使用的所有小型和大型锂离子电池,导致喷水器操作的机架存储火灾的开发应该类似于火灾在纸箱内部或外部引发的点火方案。
  • 用于大规模防火测试的喷水灭火系统足以防止火灾,其中锂离子电池对整体火灾严重程度的贡献大于大规模试验中发生的火灾严重程度。
  参考 [1] R. Thomas Long和Andrew Blum,“锂离子电池危害和使用评估 - 第三阶段”,最终报告,2016年11月。 [2] B. Ditch和J. de Vries,“锂离子电池的可燃性表征在批量存储,“FM全球技术报告,2013年 3 月。[3] R. Thomas Long Jr.,RT Long Jr.,J。Sutula和M. Kahn,”锂离子电池危害和使用评估阶段IIB:可燃性表征“用于储存保护的锂离子电池”,2013年为消防研究基金会准备的报告。 [4] B. Ditch,“开发锂离子电池散装储存保护建议:喷洒式防火测试”,FM Global,9月2016.  [5] C. Mikolajczak,M。Kahn,K。White和R. Long,“锂离子电池危害和使用评估”,为消防研究基金会编写的报告,2011年6月。

发布于 2019-03-19 19:43

免责声明:

本文由 felix 原创发布于 大董知识库 ,著作权归作者所有。

登录一下,更多精彩内容等你发现,贡献精彩回答,参与评论互动

登录! 还没有账号?去注册

felix
2019-03-19 19:45
Executive Summary - Fire Protection Guidance for Warehouse Storage of Cartoned Li-ion Batteries By Tom Long and Andrew Blum Exponent, Inc This article summarizes fire tests conducted to determine fire protection guidance for warehouse storage of cartoned Li-ion batteries. For full report see reference 1. The main methodology for this project consisted of a two-pronged approach to analyze the fire hazard of Li-ion batteries in cartons: (1) a comparison of free burn flammability characteristics of a large-format polymer pouch Li-ion battery to FM Global standard commodities and previously tested small-format Li-ion batteries in a rack storage array2,3 and (2) a large-scale fire test to assess the performance of ceiling-level sprinkler protection on cartoned large-format polymer pouch Li-ion batteries. The goal of the experimental approach was to maximize the application of the successful large-scale fire test result. Additional tasks of this project involved (3) assessing the impact of internal ignition within a pallet load of batteries versus the external ignition typically used in large-scale fire testing, and (4) assessing the effectiveness of sprinkler water at suppressing a fire at a later stage of battery involvement than could be achieved in the large-scale test. These tasks reinforce the sprinkler protection guidance resulting from the successful large-scale fire test. All data, test descriptions, data analysis and figures in this report were provided by FM Global. Exponent has relied on the FM Global testing report titled “Development of Protection Recommendations for Li-ion Battery Bulk Storage: Sprinklered Fire Test” as a basis for this report4. This project was conducted in partnership with the Property Insurance Research Group and in collaboration with the Fire Protection Research Foundation. The previous two phases of the project included a use and hazard assessment report5 (Phase I) and a series of reduced-commodity fire tests comparing the flammability characteristics of common Li-ion batteries/products to FM Global standard commodities (Phase II)2,3. These tests showed that bulk storage of small-format (2.6 Ah) Li-ion batteries exhibit similar fire growth, leading to first sprinkler operation as other more common cartoned commodities. Further, it was determined that the time required for involvement of the Li-ion batteries in a fully developed fire is approximately five minutes. These conclusions provided the basis for sprinkler protection recommendations for small-format Li-ion batteries in bulk storage, with the goal of suppressing the fire before the anticipated time of involvement of Li-ion batteries. The Li-ion batteries available for this project were 20 amp hour (Ah), 3.3 volt (V), polymer pouch batteries with lithium iron phosphate (LiFePO4) chemistry. The battery dimensions were approximately 6.0×9.0×0.3 inches, and the state-of-charge (SOC) was nominally 50%. Packaging consisted of corrugated containerboard cartons that housed 20 batteries separated by 10 levels of plastic dividers. This packaging and battery layout was consistent with the previously tested small-format Li-ion polymer batteries2,3. The free burn flammability characteristics of the 20 Ah Li-ion polymer pouch battery were tested and compared to those of FM Global’s standard commodities and small-format Li-ion batteries from Phase II2,3. The test, referred to as a “reduced-commodity” test, was used to estimate the fire hazard present at the time of first sprinkler operation in a sprinklered warehouse fire scenario. Measurements focused on the fire development of each commodity and the time of battery involvement for the Li-ion batteries during a free-burn rack storage fire test. The key findings reported by FM Global from these tests when compared to the previous reduced-commodity tests included: The cartoned 20 Ah large-format battery used in the present study represented a higher hazard than the previously tested 2.6 Ah small-format cylindrical and polymer pouch batteries. Product packaging (corrugated board containers and plastic dividers) was identified as a key factor driving the hazard in Li-ion batteries in storage. While the corrugated board cartons were shown to dominate the initial fire growth, the plastic content within the cartons was shown to be a driving factor in the overall commodity hazard. Cartoned batteries containing significant quantities of plastics exhibited a similar rapid increase in the released energy due to involvement of the plastic early in the fire development. Cartoned batteries containing minimal plastics (such as the small-format cylindrical and polymer Li-ion batteries tested in Phase 2) exhibited a slower increase in energy release and a delay in the battery involvement due to heating of the batteries. In this case, the plastic dividers represented a lesser combustible load than the heavy plastic dividers used for the 20 Ah polymer pouch battery. The performance of ceiling-level automatic fire sprinkler protection was assessed with a large-scale sprinklered fire test. The test evaluated the above-mentioned battery type and SOC stored in cartons in a three-tier, high-rack storage array at 15 ft. in height and a ceiling height of 40 ft. Protection was provided by quick-response, pendent sprinklers, having a 165ºF rated link with a K-factor of 22.4 gpm/psi1/2. The key findings reported by FM Global from this large-scale test included: Storage up to 15 ft. under ceiling heights up to 40 ft. can be adequately protected by a fire sprinkler system comprised of pendent sprinklers having a K-factor of 22.4 gpm/psi1/2, a nominal 165ºF temperature rating and RTI of 50 ft1/2S1/2, installed on 10 ft.×10 ft. spacing at an operating pressure of 35 psig. Protection guidance established from the large-scale fire test can be reasonably applied to small-format (such as 2.6 Ah cylindrical and polymer pouch) Li-ion batteries previously tested for this project. Two additional tasks were performed to reinforce the sprinkler protection guidance mentioned above. The first evaluation assessed the likelihood and impact of ignition resulting from thermal runaway of one or more batteries within a carton. The second analyzed the effectiveness of sprinkler water at suppressing a fire at a later stage of battery involvement than was achieved in the large-scale test. The key findings reported by FM Global from these additional analyses/tests included: For all small- and large-format Li-ion batteries used in this project, the development of a rack-storage fire leading to sprinkler operation should be similar for both an ignition scenario where the fire initiates inside or outside of the carton. The sprinkler system used in the large-scale fire test was sufficient to protect against a fire where the Li-ion batteries were contributing more to the overall fire severity than occurred in the large-scale test. References [1] R. Thomas Long and Andrew Blum, “Lithium Ion Batteries Hazard and Use Assessment - Phase III,” Final Report, November 2016. [2] B. Ditch and J. de Vries, “Flammability Characterization of Lithium-ion Batteries in Bulk Storage,” FM Global Technical Report, March 2013. [3] R. Thomas Long Jr., R. T. Long Jr., J. Sutula and M. Kahn, “Li-ion Batteries Hazard and Use Assessment Phase IIB: Flammability Characterization of Li-ion Batteries for Storage Protection,” Report prepared for the Fire Protection Research Foundation, 2013. [4] B. Ditch, “Development of Protection Recommendations for Li-ion Battery Bulk Storage: Sprinklered Fire Test,” FM Global, September 2016. [5] C. Mikolajczak, M. Kahn, K. White and R. Long, “Lithium-Ion Batteries Hazard and Use Assessment,” Report prepared for the Fire Protection Research Foundation, June 2011.
felix
2019-03-19 20:29
有兴趣较译的请联系我

推荐内容

蓄电池仓库起火
疫情中,别忘你的叉车电池
All Rights Reserved Powered BY WeCenter V4.1.0 © 2023 京ICP备16065701号